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ABSTRACT
Mutual gaze arises from the interaction of the gaze behavior
of two individuals. It is an important part of all face-to-face
social interactions, including verbal exchanges. In order for
humanoid robots to interact more naturally with people, they
need internal models that allow them to produce realistic so-
cial gaze behavior. The approach taken in this work is to
collect data from human conversational pairs with the goal
of learning a controller for robot gaze directly from human
data. As a first step towards this goal, a Markov model rep-
resentation of human gaze data is produced. We also discuss
how an algebraic analysis of the state transition structure of
such models may reveal interesting properties of human gaze
interaction.

INTRODUCTION
Mutual gaze is an ongoing process between two interactors
jointly regulating their eye contact, rather than an atomic
action by either person [2]. It plays an important part in
regulating face-to-face communication, including conversa-
tional turn-taking in adults [13]. The ability to detect face-
directed gaze is present from an early developmental stage;
even young infants are responsive to being the object of a
caretaker’s gaze [12]. Mutual gaze behavior in humans is the
basis of and precursor to more complex task-oriented gaze
behaviors such as visual joint attention [11].

Compared to other primate species humans have very visible
eyes [14, 15]. A possible explanation for this phenomenon
is the evolution of a new function of the human eye in close
range social interactions as additional source of information
about the intention of the other [24]. In many studies it has
been shown that apes and monkeys have no or only very
limited abilities to follow a human experimenters eye move-
ment to locate a hidden reward [6]. Human infants on the
other hand are able to follow eye movements from around
18 months of age [7].

Humans rely heavily on gaze information from their con-
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specifics especially during cooperative, mutualistic social in-
teractions. The importance of eye gaze shows in the trouble
humans with autism have in understanding the intentions of
others which could be inferred from information contained
in the eye region of the face [3, 5, 22]. Gazing and the ability
to follow the eye gaze of others enables us to communicate
non-verbally and improves our capacity to live in large so-
cial groups. It serves as a basic form of information trans-
mission between individuals which understand each other as
intentional agents. Additionally, human eyes signal relevant
emotional states [5, 4] enabling us to interact empathically.
For these reasons, humans need eye gaze information in or-
der to feel comfortable and to function adequately while in-
teracting with other humans.

In order to develop artificial systems with which humans
feel comfortable interacting, it is necessary to understand
the mechanisms of human gaze, especially if these systems
are humanoid robots. There have recently been a number of
studies on people’s responses to mutual gaze with robots in
conversational interaction tasks. But the models used to pro-
duce the robot’s gaze behavior are typically either not based
on human gaze behavior [26, 27, 25] or not reactive to the
human partner’s gaze actions [20]. Conversational gaze be-
havior is an interaction, and the robot’s gaze policy will have
an impact on the human’s gaze behavior and the impressions
they form about the robot.

In order to support natural and effective gaze interaction, it
is worthwhile to first look at gaze behavior in human-human
pairs. By examining human gaze, we can gain insight into
how to build better gaze policies for robots that interact with
people. The approach presented in this paper enables us to
monitor the gaze behaviour in a dyadic interaction in real
time and this allows a thorough and very detailed analysis.

EXPERIMENT

System
The automated detection of mutual gaze requires a number
of signal-processing tasks to be carried out in real time and
their separate data output streams to be combined for further
processing. Note that if the goal of this work were solely
to study mutual gaze in humans rather than to provide input
for a robot control system, there would be no requirement
for real-time operation. The video could be collected and
then analyzed later offline. The system is a mixture of off-
the-shelf programs and custom-written software combining



and processing their output. The interprocess communica-
tion was implemented using YARP [17].

ASL MobileEye gaze tracking systems were used to collect
the gaze direction data [1]. The output of the scene camera
of each system was input into face-tracking software based
on the faceAPI library [23]. Each participant also wore a
microphone which was used to record a simple sound level
(speech content was not stored). Timestamped data of gaze
direction (in x,y image pixel coordinates), location of the
partner’s facial features (in pixel coordinates), and micro-
phone sound level were logged for each participant at a rate
of 30 hertz. In order to synchronize time across machines
to maintain timestamp accuracy, a Network Time Protocol
(NTP) server/client setup was used. NTP is typically able
to maintain clock accuracy among machines to within a mil-
lisecond or less over a local area network [19].

Setup
Experiment participants were recruited in pairs from the uni-
versity campus. A requirement for participation was that
the members of each pair know one another. This restric-
tion was used because strangers have been shown to ex-
hibit less mutual gaze than people who are familiar with
one another and because the conversational task could be
awkward for participants to perform with a stranger. The
pairs were seated approximately six feet apart with a desk
between them. They were informed that they would en-
gage in an unconstrained conversation for ten minutes while
multimodal data was recorded. The participants were asked
to avoid discussing upsetting or emotionally charged topics
and given a list of suggestions should they need one, which
included: hobbies, a recent vacation, restaurants, television
shows, or movies. After filling out a consent form and writ-
ing down their demographic information, each participant
was led through the procedure to calibrate the gaze tracking
system by the experimenter before the trial began.

RESULTS
Ten pairs of people participated in the study. Of these pairs,
five experienced errors during data collection that resulted in
their data being discarded. The nature of these errors were:
loss of gaze tracker calibration due to the glasses with the
camera mount slipping or being moved by the participant,
failure of the face tracker to acquire and track the face of a
participant, and failure of the firewire connection that was
used to transmit the video data to the computers for analy-
sis. These failures reflect the difficulty of deploying a real-
time system for mutual gaze tracking due to the complexity
of the necessary hardware and software components. The
five remaining pairs of participants for whom complete face
and gaze tracking data were available were used for data
analysis. They ranged in age from 23 to 69. Of the pairs,
two were male-male, two were male-female, and one was
female-female.

Data Analysis
For each pair, the contiguous two minute period of their
data with the lowest number of tracking errors was selected
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Figure 1. The percentage of time spent in each gaze state by each con-
versational pair.

for analysis. The data was classified into high-level behav-
ioral states depending on where both participants were look-
ing and who was speaking at each timestep. In all pairs
observed, one participant looked at their partner noticeably
more than the other. The participant with the high face-
directed gaze level will be referred to as the ”high” partic-
ipant and the partner with the lower level of face-directed
gaze will be referred to as ”low”. The gaze states and their
descriptions are given below:

• Mutual - mutual gaze, as defined as both participants’
looking at one another’s face area
• At Low - the high gaze level partner looks at the face of

the low level partner while they look elsewhere
• At High - the low gaze level partner looks at the face of

the high level partner while they look elsewhere
• Away - both partners look somewhere other than their

partner’s face
• Err - gaze state could not be classified due to missing gaze

direction or face location readings

It should be noted that the ”Err” state may be caused by
loss of face tracking that is due either to failures of the face
tracker or to the partner’s face being undetected because a
person has turned their head away. This state measures a
combination of system error and participant behavior that
we cannot reliably distinguish between in this data set. We
intend to address this in future experiments for the purpose
of analysis, but this way of modeling error is consistent with
how a humanoid robot using the face tracker as input to its
controller would experience it.

The data was analyzed according to speaker role as well as
gaze behavior. Which participant was speaking at a particu-
lar timestep was determined by computing the sum over one-
second wide sliding window for the sound level recorded
from each participant’s microphone and assigning the par-
ticipant with the higher sum as the speaker. This was in-
tended to smooth over brief pauses while speaking and de-



tection errors. While the sound recording levels for the mi-
crophones were adjusted for each speaker at the start of an
experiment, the microphones still sometimes failed to de-
tect quiet speech. These results most likely have classified
some parts of both speakers’ conversational turns as times
when neither are speaking. We intend to record full speech
in future experiments to allow for more accurate and detailed
analysis. The high level states used for analysis were created
by combining the gaze states described above with the state
information about which participant in the pair was speaking
as follows:

• NS - neither participant is speaking
• HS - high gaze level participant is speaking
• LS - low gaze level participant is speaking

There are fifteen behavioral states in all. The overall amount
of time spent in each state by each pair is shown in Figure
1. It can be seen that the amount of time spent in each gaze
state varies a great deal among the pairs. This is because
their behavior was likely determined by who was speaking
as well as individual differences based on personality and
characteristics of their interpersonal relationship. In future
experiments, we intend to collect data from a larger set of
participants so that we can use statistical tests to identify
factors that influence gaze behavior. We will also use ques-
tionnaires to measure traits (such as personality) that can’t
be observed directly from the behavioral data yet may have
an impact on gaze behavior.

Markov Model
As a method of analysis and as a first step towards using
this data to implement a gaze controller for a robot, we cre-
ated a Markov model of the interaction using data from all
five pairs. A Markov model (or Markov chain) is a graph-
ical probabilistic model that describes the state transitions
of a system or process [18]. Data from the contiguous two
minute period with the lowest error rate for each pair was
combined to construct a model of their average behavior.
This model is shown in Figure 2. Each gaze state of the
interaction is a node in the model. The chance of reach-
ing any other state from a given state at the next timestep is
given by the probabilities on the outgoing edges from that
state. The probability of staying in the same state at the next
timestep is the probability of the state’s edge that points back
to itself. These self-transitions cause the time spent in each
state to follow a geometric distribution, which agrees well
with the form of the data observed. In order to improve the
readability of the model and emphasize its major dynamics,
transitions of less that 0.01 probability are not shown.

It can be seen in Figure 2 that the gaze states in which the
same member of the pair is the speaker are highly connected.
This reflects the fact that the gaze behavior varies at a faster
timescale than the conversational turn. The model’s connec-
tions show that there may be different dynamics in the gaze
behavior depending on who is speaking. It would be diffi-
cult to draw generalizable conclusions from this small data
set, but this type of modeling provides us with a tool to ex-
amine the way that gaze behavior changes over time during
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Figure 2. Markov model of the gaze state transitions for all of the con-
versational pairs.

an interaction.

Algebraic Analysis
It is possible to explore the interactions for hidden struc-
ture algebraically. Krohn-Rhodes Theory (or algebraic au-
tomata theory) established already in 1965 how to decom-
pose any deterministic finite-state automaton into a series-
parallel product of irreducible components [16], founding
a field that has grown in mathematical sophistication since
then. One of its founders, John Rhodes, suggested early on
to apply the theory to the analysis of interaction, e.g. to anal-
yse marriages or other interpersonal relationships [21]. This
has not yet been carried out to date, but the methods apply
equally to analysis of non-verbal interactions or other types
of human-human interaction. Only in the last few years how-
ever have computational tools to carry out such a decompo-
sition become available [9, 10, 8] Markov models (such as
the ones reflecting the dyadic gaze interactions) and non-
deterministic automata in general can be converted to deter-
ministic models using a standard power set construction.

Using this method, our preliminary analysis shows that pair



4’s interaction is more complex than that of other dyads. The
number of series levels needed to decompose the automa-
ton corresponding to their interaction (using the holonomy
method) is nearly twice that required for the other dyads,
and also unlike the other pairs contains a non-trivial group.
We are currently exploring what aspects of interaction are
reflected by this algebraic complexity.

The behavior of pair 4 is clearly distinct from the other pairs
(as can be seen in Figure 1) in that the overall amount of
mutual gaze during the interaction is far lower, though we
cannot yet characterize what relationship (if any) there is
between this distinction in behavior and the observed differ-
ences in complexity. Pair 4 was one of the two male-female
pairs we observed, and the most notable difference between
them and the other groups was that they both indicated that
they knew each other only ”a little” on the questionnaire,
while in all other pairs at least one participant answered that
they knew the other ”fairly well” or ”very well”. There is
far too little data to determine whether this may play a role
in the behavioral differences observed, but it is an area for
further investigation.

CONCLUSION
In this paper, a system for the automated detection of mutual
gaze was described, and results were presented from natu-
ral conversational interactions between human pairs. This
real time system is designed not purely for analysis, but to
provide gaze information as input to a controller for a hu-
manoid robot in the future. As a demonstration of how we
intend to use human-human gaze and speech data to pro-
duce a robotic gaze controller, we created a Markov model
from the data collected that captures the gaze behavior dy-
namics of the human conversational pairs. Additionally, we
presented preliminary results from an algebraic analysis of
the structure of the resulting Markov model and discussed
how this type of analysis may be used to computationally
investigate qualities of the gaze interaction.
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